CHEM442-001 College of Charleston Spring 1999 Exam V

1(25). For ${}^{12}C \equiv {}^{16}O \ (\mu = 1.138\ 518 \times 10^{-26}\ \text{kg})$ the microwave rotational spectrum consists of a series of evenly spaced lines at 3.8604 cm⁻¹, 7.7208 cm⁻¹, 11.5812 cm⁻¹, 15.4416 cm⁻¹, etc.

Calculate the bond length of this molecule.

The IR spectrum of ${}^{12}C \equiv {}^{16}O$ has an absorption peak centered at $\omega_e = 2142.61 \text{ cm}^{-1}$. Calculate the force constant of this molecule.

Predict the location of the IR spectrum absorption peak for $^{12}C\equiv^{18}O$ ($\mu=1.195$ 38 \times 10 $^{-26}$ kg).

- 2(20). The polarizability of CO(g) is $2.20 \times 10^{-40} \text{ C}^2 \text{ N}^{-1}$ m and the dipole moment is 3.90×10^{-31} C m (interestingly, the negative end is the C atom). Calculate the fraction of intermolecular forces potential energy resulting from the dipole interactions, $(U_{d/d} + U_{d/ind})/(U_{d/d} + U_{d/ind} + U_{L})$, at 25 °C.
- 3(20). Consider the following proposed mechanism for the decomposition of ozone

$$2 \operatorname{O}_3(g) \to 3 \operatorname{O}_2(g)$$

given by

$$k_2$$

 $O_3 + M \neq O_2 + O + M$
 k_{-2}
 k'_2
 $O + O_3 \rightarrow 2O_2$

Apply the steady state approximation for $C(O_2)$ and find $-dC(O_3)/dt$.

4(15). The rate constant for

$$\operatorname{COCl}_2(g) \rightarrow \operatorname{CO}(g) + \operatorname{Cl}_2(g) \qquad \Delta_r U_{700} = 103.1 \text{ kJ}$$

is given by

$$\ln [k/(\min)^{-1}] = \frac{-26296}{[T/(K)]} + 34.893$$

Prepare a reaction coordinate diagram (label properly) for this reaction.

5(20). The following data were obtained for the reaction

$$2 H_2O_2(aq) \rightarrow 2 H_2O(l) + O_2(g)$$

<i>t</i> /(s)	0	300	600	900	1500	2100	2700	8
$V(O_2)/(cm^3)$	0.00	7.50	14.00	19.65	28.80	35.80	41.20	57.90

Determine graphically (graph paper attached) the order of reaction with respect to $C(H_2O_2)$.