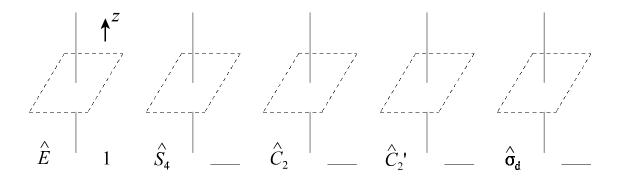
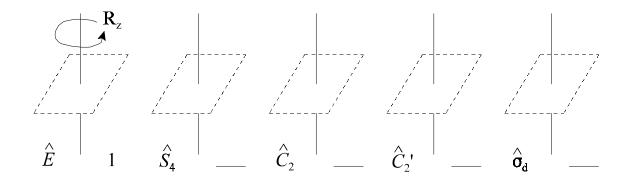

CHEM442-001 College of Charleston Spring 1999 Exam IV

The point group for molecular allene CH_2CCH_2 is \mathbf{D}_{2d} . (Note: in the molecular model shown, the two mirror planes $2\hat{\sigma}_d$ are at 45° to the plane of the paper and the two rotation axes $2\hat{C}_2'$ are in the plane of and perpendicular to the paper.

D _{2d}	Ê	$2\hat{S}_4$	\hat{C}_2	2Ĉ ₂ '	2ô _d	
A_1	1	1	1	1	1	x^2+y^2,z^2
A_2	1	1	1	-1	-1	R_z
B_1	1	-1	1	1	-1	x^2-y^2
B_2	1	-1	1	-1	1	<i>z,xy</i>
Е	2	0	-2	0	0	$(x,y),(R_x,R_y),(xz,yz)$


1(10). How many symmetry operations are in this group?

How many symmetry classes are in this group?


2(10). Is allene optically active? _____

Does allene have an electric dipole moment?

- 3(10). Perform a direct product between B_1 and A_2 . Will an electric dipole transition between states with these symmetries be allowed?
- 4(10). Confirm the table entries for translation along the z direction by completing the remaining four drawings.

5(10). Confirm the table entries for rotation about the z direction by completing the remaining four drawings.

6(20). Determine the irreducible representations for the vibrational motion.

7(15). Of the 15 vibrational transitions, list those that are <u>ONLY</u> IR active and specify the number of peaks that will be observed.

Of the 15 vibrational transitions, list those that are <u>ONLY</u> Raman active and specify the number of peaks that will be observed.

Of the 15 vibrational transitions, list those that are <u>**BOTH</u>** IR and Raman active and specify the number of peaks that will be observed.</u>

8(15). Determine the irreducible representations for the π molecular orbitals. (If time permitted, the next question would be to write the wave function as $\phi = N \Sigma \pm \phi_i$.)