CHEM442-001
College of Charleston
Spring 1999
Exam II
1(10). Name/identify each of the mathematical representations. The first one is an example.

$$
g_{J}=(2 J+1)
$$

degeneracy of rotational energy level
$\phi=\mu_{1} \mu_{2} \cdots$ where μ_{i} are 1-electron wave functions \qquad trial wave function
$\frac{Z_{a} Z_{b} e^{2}}{\left(4 \pi \epsilon_{o}\right) r_{a b}} \approx$ constant where a and b are nuclei \qquad approximation
$E_{\phi} \geq E_{\psi}=E_{\text {experimental }}$ method $\left\lvert\, \begin{array}{lll}H_{11}-E S_{11} & H_{12}-E S_{12} & H_{13}-E S_{13} \\ H_{21}-E S_{21} & H_{22}-E S_{22} & H_{23}-E S_{23} \\ H_{31}-E S_{31} & H_{32}-E S_{32} & H_{33}-E S_{33}\end{array}\right.$ \qquad determinant
$\Psi_{\text {total }}=\psi_{\text {center of mass }} \psi_{\text {internal }}$ and $E_{\text {total }}=E_{\text {center of mass }}+E_{\text {internal }}$
2(15). Derive the normalized eigenfunction for a rigid rotator with $J=1$ and $m= \pm 1$. Show all work in determining the normalization constant and the associated Legendre function.

3(25). Gaseous NaCl exists as a diatomic molecule held together by a rather weak polar covalent bond. Given the vibrational "frequency" $\bar{v}_{o}=276 \mathrm{~cm}^{-1}$, calculate N_{1} / N_{0} at 1000 K .

Sketch $\Psi^{*} \psi$ for $v=4$ on the diagram.

4(50). A particle is confined to a two-dimensional box in the $x y$ plane. The mass of the particle is m and the lengths of the sides of the box are $0 \leq x \leq a$ and $0 \leq y \leq b$.
A) Write the hamiltonian operator for this system. There is no potential energy to consider. Write out the expression for the del-squared operator.
B) Based on our study of particles in one- and three-dimensional boxes, write the wave function that is used to describe this system.
C) Identify the quantum numbers corresponding to the sketch of probability given by the P-Chem cd program.

$$
n_{x}=\quad n_{y}=
$$

D) Based on our study of particles in one- and three-dimensional boxes, write the general energy expression.

Rewrite this expression in terms of $E /\left(h^{2} / 8 m a^{2}\right)$ for a square in which $a=b$.
Rewrite this expression in terms of $E /\left(h^{2} / 8 m a^{2}\right)$ for a rectangle in which $a=2 b$.
Calculate the following nine energy states, in terms of $E /\left(h^{2} / 8 m a^{2}\right)$, for both the square and rectangle and put your answers in the table below. Plot these energies on the graph paper provided to generate a "correlation diagram".

$n_{x}=$	$n_{y}=$	$E /\left(h^{2} / 8 m a^{2}\right)$ for square	$E /\left(h^{2} / 8 m a^{2}\right)$ for rectangle
1	1		
1	2		
1	3		
2	1		
2	2		
2	3		
3	1		
3	2		
3	3		

