CHEM442-001 College of Charleston Spring 1999 Exam II

1(10). Name/identify each of the mathematical representations. The first one is an example.

- 2(15). Derive the normalized eigenfunction for a rigid rotator with J = 1 and $m = \pm 1$. Show all work in determining the normalization constant and the associated Legendre function.
- 3(25). Gaseous NaCl exists as a diatomic molecule held together by a rather weak polar covalent bond. Given the vibrational "frequency" $\bar{\mathbf{v}}_{o} = 276 \text{ cm}^{-1}$, calculate N_1/N_0 at 1000 K.

Sketch $\psi^* \psi$ for v = 4 on the diagram.

4(50). A particle is confined to a two-dimensional box in the *xy* plane. The mass of the particle is *m* and the lengths of the sides of the box are 0 ≤ x ≤ a and 0 ≤ y ≤ b.
A) Write the hamiltonian operator for this system. There is no potential energy to consider. Write out the expression for the del-squared operator.

B) Based on our study of particles in one- and three-dimensional boxes, write the wave function that is used to describe this system.

C) Identify the quantum numbers corresponding to the sketch of probability given by the P-Chem cd program.

D) Based on our study of particles in one- and three-dimensional boxes, write the general energy expression.

Rewrite this expression in terms of $E/(h^2/8ma^2)$ for a square in which a = b.

Rewrite this expression in terms of $E/(h^2/8ma^2)$ for a rectangle in which a = 2b.

Calculate the following nine energy states, in terms of $E/(h^2/8ma^2)$, for both the square and rectangle and put your answers in the table below. Plot these energies on the graph paper provided to generate a "correlation diagram".

$n_x =$	$n_y =$	$E/(h^2/8ma^2)$ for square	$E/(h^2/8ma^2)$ for rectangle
1	1		
1	2		
1	3		
2	1		
2	2		
2	3		
3	1		
3	2		
3	3		