CHEM442-001/002	Name		
College of Charleston			
Spring 2001			
Exam V		Score	/100

1(50). The rotational and rotational-vibrational spectra for carbon monoxide (${}^{12}C{}^{16}O$), where $M/(g \text{ mol}^{-1}) = 12.00000$ and 15.99491, were analyzed. If the rotational spectroscopic constant for CO is $B_e = 1.9302 \text{ cm}^{-1}$, calculate the C=O bond length.

Predict the location (wave numbers) of the first four lines of the pure rotational spectrum.

Calculate B^* and determine the intensity ratio of I(J=2)/I(J=1) at 25 °C.

For the vibrational transition $v = 0 \Rightarrow 1$, the values of the wave numbers of the P and R branches can be fit to the equation

$$\tilde{v}/(cm^{-1}) = \tilde{v}_{o} + (2B_{e} - 2\alpha_{e})m - \alpha_{e}m^{2}$$

= (2143.273) + (3.8264)m - (0.01754)m^{2}

using a nonlinear multiple least squares regression technique. Determine B_e and α_e from these results.

Using the empirical equation given above, derive an equation expressing $\Delta \tilde{v}$ for *m* changing from *m* to *m*+1.

Calculate the separation of lines in the P branch for J=10 (m=-10) and in the R branch for J=10 (m=11).

2(20). The rotational-vibrational spectrum of carbon dioxide (${}^{16}O={}^{12}C={}^{16}O$) was analyzed. The symmetry of the vibrational modes can be determined to be E_{1u} , A_{2u} , and A_{1g} . Using the character table for the \mathbf{D}_{oh} point group, determine which transition(s) is/are infrared active ______.

D _{∞h} repre- sentation	Ê	$2\hat{C}^{oldsymbol{\varphi}}_{_{\infty}}$	∞ô _v	î	ô _h	$2\hat{S}^{oldsymbol{\Phi}}_{\infty}$	$\infty \hat{C}_2$	
A_{1g}	1	1	1	1	1	1	1	$x^2 + y^2$, z^2
A_{1u}	1	1	1	-1	-1	-1	-1	
A_{2g}	1	1	-1	1	1	1	-1	R_z
A_{2u}	1	1	-1	-1	-1	-1	1	Ζ

E_{1g}	2	2 cos φ	0	2	-2	2 cos φ	0	$(R_x,R_y),(xz,yz)$
E_{1u}	2	2 cos φ	0	-2	2	2 cos φ	0	(x,y)
E_{2g}	2	2 cos 2φ	0	2	2	2 cos 2φ	0	(x^2-y^2,xy)
:	:	:	:	:	:	:	:	

To change the symmetry of the CO_2 molecule, a student proposed substituting ¹⁸O for one of the O atoms to study the spectrum of ¹⁸O=¹²C=¹⁶O. Circle the correct response to each change in property of the new molecule compared to the original ¹⁶O=¹²C=¹⁶O:

¹⁸ O= ¹² C bond length:	increased	identical	decreased
$^{18}O=^{12}C$ bond strength:	increased	identical	decreased
moment of inertia	increased	identical	decreased
$\Delta \tilde{v}$ in the Raman S branch:	increased	identical	decreased

3(30). For the reaction

$$A \rightarrow B$$
 $\Delta_r E = -100 \text{ kJ}$

there are two different proposed mechanisms

mechanism 1 with rate constant k_1 A \rightarrow B $E_{a,1} = 50 \text{ kJ mol}^{-1}$

mechanism 2 with rate constant
$$k_2$$
 A \rightarrow B $E_{a,2} = 300$ kJ mol

Draw the complete reaction coordinate diagram (to scale) showing both mechanisms. Clearly label the reactant, product, $\Delta_r E$, and activation energies.

Based on activation energies, which mechanism is preferred?

If the temperature is decreased from 25 °C to 0 °C, calculate the respective ratios of the rate constants $k_1(0 \text{ °C})/k_1(25 \text{ °C})$ and $k_2(0 \text{ °C})/k_2(25 \text{ °C})$.

For which mechanism is the greater temperature effect?

A plot of $1/C_{\rm B}$ against *t* is linear during the early stages of the reaction and becomes nonlinear during and after the intermediate stages of the reaction and a plot of $\ln C_{\rm B}$ against *t* is nonlinear during and before the intermediate stages of the reaction and becomes linear during the final stages of the reaction. On the other side of this sheet, write a brief interpretation of these observations.