CHEM442-001/002
College of Charleston
Spring 2001
Exam V

Name \qquad

1(50). The rotational and rotational-vibrational spectra for carbon monoxide $\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)$, where $M /\left(\mathrm{g} \mathrm{mol}^{-1}\right)=12.00000$ and 15.99491 , were analyzed.
If the rotational spectroscopic constant for CO is $B_{\mathrm{e}}=1.9302 \mathrm{~cm}^{-1}$, calculate the $\mathrm{C} \equiv \mathrm{O}$ bond length.

Predict the location (wave numbers) of the first four lines of the pure rotational spectrum.
Calculate B^{*} and determine the intensity ratio of $I(J=2) / I(J=1)$ at $25^{\circ} \mathrm{C}$.
For the vibrational transition $v=0 \leftrightarrow 1$, the values of the wave numbers of the P and R branches can be fit to the equation

$$
\begin{aligned}
\tilde{\mathrm{v}} /\left(\mathrm{cm}^{-1}\right) & =\tilde{\mathrm{v}}_{\mathrm{o}}+\left(2 B_{\mathrm{e}}-2 \alpha_{\mathrm{e}}\right) m-\alpha_{\mathrm{e}} m^{2} \\
& =(2143.273)+(3.8264) m-(0.01754) m^{2}
\end{aligned}
$$

using a nonlinear multiple least squares regression technique. Determine B_{e} and α_{e} from these results.

Using the empirical equation given above, derive an equation expressing $\Delta \tilde{\mathrm{v}}$ for m changing from m to $m+1$.

Calculate the separation of lines in the P branch for $J=10(m=-10)$ and in the R branch for $J=10(m=11)$.

2(20). The rotational-vibrational spectrum of carbon dioxide $\left({ }^{16} \mathrm{O}={ }^{12} \mathrm{C}={ }^{16} \mathrm{O}\right)$ was analyzed.
The symmetry of the vibrational modes can be determined to be $E_{1 \mathrm{u}}, A_{2 \mathrm{u}}$, and $A_{1 \mathrm{~g}}$. Using the character table for the $\mathbf{D}_{\text {oh }}$ point group, determine which transition(s) is/are infrared active \qquad and Raman active \qquad .

$\mathbf{D}_{\infty h}$ repre- sentation	\hat{E}	$2 \hat{C}_{\infty}^{\phi}$	$\infty \hat{\sigma}_{v}$	\hat{i}	$\hat{\sigma}_{h}$	$2 \hat{S}_{\infty}^{\phi}$	$\infty \hat{C}_{2}$	
$A_{1 g}$	1	1	1	1	1	1	1	$x^{2}+y^{2}, z^{2}$
$A_{1 u}$	1	1	1	-1	-1	-1	-1	
$A_{2 g}$	1	1	-1	1	1	1	-1	R_{z}
$A_{2 u}$	1	1	-1	-1	-1	-1	1	z

$E_{1 g}$	2	$2 \cos \phi$	0	2	-2	$2 \cos \phi$	0	$\left(R_{x}, R_{y}\right),(x z, y z)$
$E_{1 u}$	2	$2 \cos \phi$	0	-2	2	$2 \cos \phi$	0	(x, y)
$E_{2 g}$	2	$2 \cos 2 \phi$	0	2	2	$2 \cos 2 \phi$	0	$\left(x^{2}-y^{2}, x y\right)$
\vdots								

To change the symmetry of the CO_{2} molecule, a student proposed substituting ${ }^{18} \mathrm{O}$ for one of the O atoms to study the spectrum of ${ }^{18} \mathrm{O}={ }^{12} \mathrm{C}={ }^{16} \mathrm{O}$. Circle the correct response to each change in property of the new molecule compared to the original ${ }^{16} \mathrm{O}={ }^{12} \mathrm{C}={ }^{16} \mathrm{O}$:

${ }^{18} \mathrm{O}={ }^{12} \mathrm{C}$ bond length:	increased	identical	decreased
${ }^{18} \mathrm{O}={ }^{12} \mathrm{C}$ bond strength:	increased	identical	decreased
moment of inertia	increased	identical	decreased
$\Delta \tilde{v}$ in the Raman S branch:	increased	identical	decreased

3(30). For the reaction

$$
\mathrm{A} \rightarrow \mathrm{~B} \quad \Delta_{\mathrm{r}} E=-100 \mathrm{~kJ}
$$

there are two different proposed mechanisms
mechanism 1 with rate constant $k_{1} \quad \mathrm{~A} \rightarrow \mathrm{~B} \quad E_{\mathrm{a}, 1}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ mechanism 2 with rate constant $k_{2} \quad \mathrm{~A} \rightarrow \mathrm{~B} \quad E_{\mathrm{a}, 2}=300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Draw the complete reaction coordinate diagram (to scale) showing both mechanisms.
Clearly label the reactant, product, $\Delta_{\mathrm{r}} E$, and activation energies.

Reaction Coordinate

Based on activation energies, which mechanism is preferred?
If the temperature is decreased from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$, calculate the respective ratios of the rate constants $k_{1}\left(0^{\circ} \mathrm{C}\right) / k_{1}\left(25^{\circ} \mathrm{C}\right)$ and $k_{2}\left(0^{\circ} \mathrm{C}\right) / k_{2}\left(25^{\circ} \mathrm{C}\right)$.

For which mechanism is the greater temperature effect?
A plot of $1 / C_{\mathrm{B}}$ against t is linear during the early stages of the reaction and becomes nonlinear during and after the intermediate stages of the reaction and a plot of $\ln C_{\mathrm{B}}$ against t is nonlinear during and before the intermediate stages of the reaction and becomes linear during the final stages of the reaction. On the other side of this sheet, write a brief interpretation of these observations.

