\qquad
\qquad /100

1(15). Suppose $\Delta_{\mathrm{r}} G=J+K T-\Delta a T \ln T-(\Delta b / 2) T^{2}-(\Delta c / 6) T^{3}-\left(\Delta c^{\prime} / 2\right) T^{-1}$ is known for the reaction A \rightarrow B. Explain how you can find the temperature at which the reaction
A) reaches equilibrium.
B) is most spontaneous.

Suppose $\Delta_{\mathrm{r}} G=q^{+} \pi T-\Delta_{a} T \ln T-(\Delta / 2) T^{2}-(\Delta c / 6) T^{3}-\left(\Delta c^{\prime} / 2\right) T^{-1}$ is known for the reaction $\mathrm{A} \rightarrow \mathrm{C}$. Explain how you can find the temperature at which the reaction $\mathrm{A} \rightarrow \mathrm{B}$ is more spontaneous than the reaction $\mathrm{A} \rightarrow \mathrm{C}$.

2(10). In our study of the hydrogen atom we encountered three quantum numbers. Name these and give the respective symbols and permitted values.

3(20). Calculate $\Delta_{\mathrm{r}} G^{0}$ for the reaction

$$
4 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 3 \mathrm{KClO}_{4}(\mathrm{~s})+\mathrm{KCl}(\mathrm{~s}) \quad \Delta_{\mathrm{r}} H^{0}=-144.08 \mathrm{~kJ}
$$

given $\Delta_{\mathrm{f}} G^{\circ} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)=-409.14$ for $\mathrm{KCl}(\mathrm{s}),-296.25$ for $\mathrm{KClO}_{3}(\mathrm{~s})$, and -303.09 for $\mathrm{KClO}_{4}(\mathrm{~s})$.

Is the entropy change for this reaction a favorable change? \qquad
4(10). In Barrow Problem 10-11 we saw that there was no orbit of a helium atom that has approximately the same radius as the $n=1$ orbit for a hydrogen atom. Is this true for the energy as well? \qquad (Prove your answer.)

5(10). For a hydrogen atom with $n=3$ and $l=0$, sketch on the respective axes

6(10). List the contributions that would be included in the internal hamiltonian operator for a multielectron atomic system.

What is the physical significance of the eigenvalues determined by using the hamiltonian operator on the eigenfunctions describing the system.
$7(25)$. Use the following to determine $\Theta_{2, \pm 1}(\theta)$:

$$
\begin{gathered}
\Theta_{l, m}(\theta)=\left[\frac{(2 l+1)(l-|m|)!}{2(l+|m|)!}\right]^{(1 / 2)} P_{l}^{|m|}(\cos \theta) \\
P_{l}^{|m|}(x)=\frac{1}{2^{l} l!}\left(1-x^{2}\right)^{|m| / 2} \frac{d^{l+|m|}}{d x^{l+|m|}}\left(x^{2}-1\right)^{l}
\end{gathered}
$$

