| CHEM442-001/002       | Name  |      |
|-----------------------|-------|------|
| College of Charleston |       |      |
| Spring 2001           |       |      |
| Exam I                | Score | /100 |

1(15). Suppose Δ<sub>r</sub>G = J + KT - Δa T ln T - (Δb/2)T<sup>2</sup> - (Δc/6)T<sup>3</sup> - (Δc'/2)T<sup>-1</sup> is known for the reaction A → B. *Explain* how you can find the temperature at which the reaction A) reaches equilibrium.
B) is most spontaneous.

Suppose  $\Delta_r G = \mathcal{A} + \mathcal{R}T - \Delta_{\mathcal{A}}T \ln T - (\Delta_{\mathcal{A}}^2)T^2 - (\Delta_{\mathcal{A}}^2)T^3 - (\Delta_{\mathcal{A}}^2/2)T^1$  is known for the reaction A  $\rightarrow$  C. *Explain* how you can find the temperature at which the reaction A  $\rightarrow$  B is more spontaneous than the reaction A  $\rightarrow$  C.

- 2(10). In our study of the hydrogen atom we encountered three quantum numbers. Name these and give the respective symbols and permitted values.
- 3(20). Calculate  $\Delta_r G^o$  for the reaction  $4 \text{ KClO}_3(s) \rightarrow 3 \text{ KClO}_4(s) + \text{ KCl}(s)$   $\Delta_r H^o = -144.08 \text{ kJ}$ given  $\Delta_f G^o / (\text{kJ mol}^{-1}) = -409.14$  for KCl(s), -296.25 for KClO<sub>3</sub>(s), and -303.09 for KClO<sub>4</sub>(s).

Is the entropy change for this reaction a favorable change?

- 4(10). In Barrow Problem 10-11 we saw that there was no orbit of a helium atom that has approximately the same radius as the n = 1 orbit for a hydrogen atom. Is this true for the energy as well? \_\_\_\_\_ (Prove your answer.)
- 5(10). For a hydrogen atom with n = 3 and l = 0, sketch on the respective axes



6(10). *List* the contributions that would be included in the internal hamiltonian operator for a multielectron atomic system.

What is the physical significance of the eigenvalues determined by using the hamiltonian operator on the eigenfunctions describing the system.

7(25). Use the following to determine  $\Theta_{2,\pm 1}(\theta)$ :

$$\Theta_{l,m}(\theta) = \left[\frac{(2l+1)(l-|m|)!}{2(l+|m|)!}\right]^{(1/2)} P_l^{|m|}(\cos \theta)$$

$$P_{l}^{|m|}(x) = \frac{1}{2^{l} l!} (1 - x^{2})^{|m|/2} \frac{d^{l+|m|}}{dx^{l+|m|}} (x^{2} - 1)^{l}$$