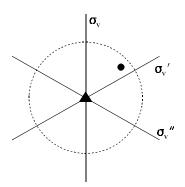
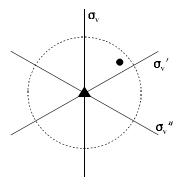

CHEM442-001/002 College of Charleston Spring 2000 Exam IV

1(50). For each of the following covalently bonded species write the Lewis structure(s); draw a three-dimensional sketch showing the bonding; identify the shape of the species; determine the point group; and determine whether or not the species has a center of inversion, is polar, and is optically active. (You might consider showing your work in case you're interested in partial credit for incorrect final answers.)

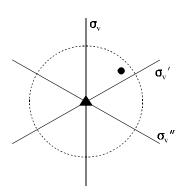
A) HClO	,	
Lewis structure:	sketch:	shape point group i polar optically active
B) CCl ₃ Br		
Lewis structure:	sketch:	shape point group i polar optically active
C) OCN-		
Lewis structure:	sketch:	shape point group i polar optically active
D) Co(H ₂ O) ²⁺ Lewis structure:	sketch:	(excluding H atoms) shape point group i polar optically active
E) BO ₂ Lewis structure:	sketch:	shape point group i polar optically active


2(50). The point group of chloroform $CHCl_3$ (maybe you're ready for some?) is $\mathbf{C_{3v}}$. Valuable information for the point group is

$C_{3\nu}$ representation	Ê	$2\hat{C}_3$	3ô _v	
A_1	1	1	1	$z, x^2 + y^2, z^2$
A_2	1	1	-1	R_z
E	2	-1	0	$(x,y), (R_x,R_y), (x^2-y^2,xy), (xz,yz)$



A(15). Show on the projection diagrams the following "multiplications" and identify the result.


$$\hat{\sigma}_v \times \hat{C}_3 =$$

 $\hat{\sigma}_{v}' \times \hat{C}_{3} =$

 $\hat{\sigma}_{v}' x \hat{\sigma}_{v} =$

B(5). How many vibrational degrees of freedom does CHCl₃ have? _____

C(20). Determine the symmetry of the vibrational modes of CHCl₃ expressed as a direct sum of the irreducible representations.

- D(5). Which of these are infrared active? _____ How many peaks will be observed? _____
- E(5). Which of these are Raman active? _____ How many peaks will be observed? _____