CHEM442-001/002
College of Charleston
Spring 2000
Exam III
1(25). Consider the $\mathrm{H}_{2}{ }^{+}$molecule-ion in which the bond length is 106 pm . A trial wave function that describes the bonding orbital is

$$
\phi(\text { bonding })=(1 / 2)^{1 / 2}\left(\Psi_{1 s A}+\Psi_{1 s B}\right)
$$

and the antibonding orbital is

$$
\phi(\text { antibonding })=(1 / 2)^{1 / 2}\left(\Psi_{1 s A}-\Psi_{1 s B}\right)
$$

where

$$
\Psi_{1 s}=(1 / \pi)^{1 / 2}\left(1 / a_{o}\right)^{3 / 2} e^{-r / a_{o}}
$$

and $a_{o}=52.92 \mathrm{pm}$. Calculate the ratio $\phi($ bonding $) / \phi($ antibonding $)$ at the position marked which lies 50 pm to the left of H_{A}.

2(25). Using the correct molecular orbital diagram for homonuclear diatomic molecules, write the complete electron configuration for C_{2}.

Describe the bonding in the molecule and calculate the bond order.
Describe the magnetic properties of the molecule.
Using the other (incorrrect) molecular orbital diagram, write the complete electron configuration for C_{2}. Based on this configuration, has the bond order changed? \qquad Have the magnetic properties changed? \qquad

Returning to the correct molecular orbital diagram, write the complete electron configuration for $\mathrm{C}_{2}{ }^{-}$.

Which is more stable: C_{2} or $\mathrm{C}_{2}{ }^{-}$?
Which molecule has the shorter bond length ($1.2682 \AA$ compared to $1.3117 \AA$)? \qquad

For the reaction

$$
\mathrm{C}_{2}(g)+\mathrm{e}^{-} \rightarrow \mathrm{C}_{2}^{-}(g) \quad \Delta H= \pm 400 \mathrm{~kJ}
$$

which sign should appear for the enthalpy change? \qquad
3(25). Consider the H_{3} molecule in which we will assume the three nuclei to form an equilateral triangle.

Write the complete internal hamiltonian for this system listing all terms (use no summation shortcut notation).

Using simple molecular orbital theory, write a trial wave function in terms of basis functions.

Following our derivation for $\mathrm{H}_{2}{ }^{+}$and H_{2} in class, write the LCAO basis functions using $\Psi_{1 s}$ hydrogen-like atomic wave functions.

4(25). In laboratory we saw that only the valence electrons are important in describing the bonding in $\mathrm{H}_{2} \mathrm{O}_{2}$. Shown below are several (but not all) of the molecular orbitals drawn in scale and designated by the symmetry notation rather than σ, σ^{*}, etc.
$E /(\mathrm{au})$
$6 \mathrm{~A}-0.6884$
$5 \mathrm{~B}-0.2787$

4B	-0.4876
5A	-0.5038
4A	-0.5862
3B	-0.6830
3A	-0.6879

$2 \mathrm{~B}-\mathrm{-} .2111$
$2 \mathrm{~A}--1.4536$

How many valence atomic orbitals were used in these calculations? \qquad How many molecular orbitals are generated by these calculations? \qquad
How many of the molecular orbitals are completely filled? \qquad
Sketches of three of the molecular are shown. Circle the sketch which represents $\sigma(\mathrm{OH})$ and box the sketch which represents $\sigma^{*}(\mathrm{OH})$.

