CHEM441-001/002
College of Charleston
Fall 1999
Exam V

1 (20). A flask containing a $0.0500-\mathrm{mol}$ sample of $\mathrm{N}_{2}(\mathrm{~g})$ at 1.00 bar at $25^{\circ} \mathrm{C}$ is heated to $75^{\circ} \mathrm{C}$ by placing it in a constant temperature bath at $75^{\circ} \mathrm{C}$. Assuming a negligible volume change, calculate ΔS (system), ΔS (surroundings), and ΔS (universe) for the gas. Over this temperature range the heat capacity of the gas can be considered to be constant and any vibrational contribution to the heat capacity is negligible.

2(30). Using the appropriate equations from statistical thermodynamics, calculate $S^{\circ}{ }_{298}$ for $\mathrm{O}_{2}(\mathrm{~g})$ given the following data for the ground state: $g($ electronic $)=3, \tilde{v}=1580 . \mathrm{cm}^{-1}$, and $I=$ $1.936 \times 10^{-46} \mathrm{~kg} \mathrm{~m}^{2}$.

Given $S^{\circ}{ }_{298}$ for $\mathrm{N}_{2}(\mathrm{~g})=191.609 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $S^{\circ}{ }_{298}$ for $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})=219.957 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$, calculate $\Delta_{\mathrm{f}} S^{\mathrm{o}}{ }_{298}$ for $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$. [Note: if you are not satisfied with your answer for $S^{\mathrm{o}}{ }_{298}$ for $\mathrm{O}_{2}(\mathrm{~g})$ from above, use $200.000 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.]

Given $\Delta_{\mathrm{f}} \mathrm{H}^{\mathrm{o}}{ }_{298}$ for $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})=82.048 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate $\Delta_{\mathrm{f}} \mathrm{G}^{\mathrm{o}}{ }_{298}$.
Is the enthalpy change favorable?
Is the entropy change favorable?
Is the formation reaction spontaneous?
3(15). Suppose $S^{0}{ }_{4000}$ for gaseous chromium was to be calculated from heat capacity and enthalpy of phase transformation data. Explain in detail (including a sketch of the proper graph) how you would do this calculation given the following information: C_{p} data from 15 K to 311.5 K for $\mathrm{Cr}(\mathrm{sI}), \Delta H$ for $\mathrm{Cr}(\mathrm{sI})$ to $\mathrm{Cr}(\mathrm{sII}), C_{\mathrm{p}}$ data from 311.5 K to 2130 K for $\mathrm{Cr}(\mathrm{sII})$, ΔH for fusion, C_{p} data from 2130 K to 2952 K for $\mathrm{Cr}(\mathrm{l}), \Delta H$ for vaporization, and C_{p} data from 2952 K to 4000 K for $\mathrm{Cr}(\mathrm{g})$.

4(10). Choose the process which involves the largest decrease in entropy:
a) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
c) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
d) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
e) $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$

Explain your choice.
$5(25)$. For graphite the temperature dependence of the heat capacity is given by

$$
C_{\mathrm{p}} /\left(\mathrm{J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)=16.86+4.77 \times 10^{-3} T-8.54 \times 10^{5} \mathrm{~T}^{-2}
$$

Calculate ΔS for heating a molar sample from $25^{\circ} \mathrm{C}$ to $1000{ }^{\circ} \mathrm{C}$ at constant pressure.
A student mistakenly calculated the value of ΔS using

$$
\Delta S^{\prime}=\frac{q}{(\text { average } T)}=\frac{\int_{p} d T}{(\text { average } T)}
$$

Calculate ΔS^{\prime} and compare it to the correct value.

