CHEM441-001/002 College of Charleston Fall 1999 Exam V

- 1(20). A flask containing a 0.0500-mol sample of $N_2(g)$ at 1.00 bar at 25 °C is heated to 75 °C by placing it in a constant temperature bath at 75 °C. Assuming a negligible volume change, calculate $\Delta S(system)$, $\Delta S(surroundings)$, and $\Delta S(universe)$ for the gas. Over this temperature range the heat capacity of the gas can be considered to be constant and any vibrational contribution to the heat capacity is negligible.
- 2(30). Using the appropriate equations from statistical thermodynamics, calculate S_{298}° for O₂(g) given the following data for the ground state: g(electronic) = 3, $\tilde{\mathbf{v}} = 1580$. cm⁻¹, and $I = 1.936 \times 10^{-46}$ kg m².

Given S_{298}° for N₂(g) = 191.609 J K⁻¹ mol⁻¹ and S_{298}° for N₂O(g) = 219.957 J K⁻¹ mol⁻¹, calculate $\Delta_{\rm f} S_{298}^{\circ}$ for N₂O(g). [Note: if you are not satisfied with your answer for S_{298}° for O₂(g) from above, use 200.000 J K⁻¹ mol⁻¹.]

Given $\Delta_f H^{\circ}_{298}$ for N₂O(g) = 82.048 kJ mol⁻¹, calculate $\Delta_f G^{\circ}_{298}$.

Is the enthalpy change favorable? Is the entropy change favorable? Is the formation reaction spontaneous?

3(15). Suppose S_{4000}° for gaseous chromium was to be calculated from heat capacity and enthalpy of phase transformation data. Explain in detail (including a sketch of the proper graph) how you would do this calculation given the following information: C_p data from 15 K to 311.5 K for Cr(sI), ΔH for Cr(sI) to Cr(sII), C_p data from 311.5 K to 2130 K for Cr(sII), ΔH for fusion, C_p data from 2130 K to 2952 K for Cr(l), ΔH for vaporization, and C_p data from 2952 K to 4000 K for Cr(g).

4(10). Choose the process which involves the largest decrease in entropy:

a) $H_2O(1) \rightarrow H_2O(g)$ b) $H_2O(1) \rightarrow H_2O(s)$ c) $H_2O(s) \rightarrow H_2O(1)$ d) $H_2O(s) \rightarrow H_2O(g)$ e) $H_2O(g) \rightarrow H_2(g) + \frac{1}{2}O_2(g)$ Explain your choice.

5(25). For graphite the temperature dependence of the heat capacity is given by $C_{\rm p}/({\rm J~K^{-1}~mol^{-1}}) = 16.86 + 4.77 \times 10^{-3} T - 8.54 \times 10^{5} T^{-2}$ Calculate ΔS for heating a molar sample from 25 °C to 1000 °C at constant pressure.

A student mistakenly calculated the value of ΔS using

$$\Delta S' = \frac{q}{(average \ T)} = \frac{\int_{p}^{C_{p}} dT}{(average \ T)}$$

Calculate $\Delta S'$ and compare it to the correct value.