CHEM441-001/002 College of Charleston Fall 1999 Exam IV

1(25). The calorimeter constant for a solution calorimeter was determined by pouring 50.0 g of hot water at 97.3 °C into 100.0 g of cool water in the calorimeter at 23.7 °C resulting in a final temperature of 41.8 °C. Calculate the calorimeter constant given $C_p = 4.184$ J K⁻¹ g⁻¹ for water.

Exactly one mole of a hot metal at 86.2 °C was poured into 100.0 g of cool water in the calorimeter at 22.3 °C resulting in a final temperature of 24.7 °C. Determine the molar heat capacity of the metal.

Compare this experimental molar heat capacity of the metal to that predicted by the Law of Dulong-Petit.

- 2(45). A student was interested in which of two processes involving one mole of an ideal monatomic gas would generate the greater amount of work:
 - 1) reversible isothermal expansion from $P_1 = 100.00$ bar to $P_2 = 10.00$ bar at 298 K followed by a reversible adiabatic expansion to $P_3 = 1.00$ bar.
 - 2) reversible adiabatic expansion from $P_1 = 100.00$ bar to $P_2 = 10.00$ bar followed by a reversible isothermal expansion to $P_3 = 1.00$ bar.
 - A) Calculate the total work for the first process.
 - B) Calculate the total work for the second process.
 - C) Which process yields the greater amount of work and by how much?
 - D) On the *P*-*V* axes given, indicate the two processes and show graphically the *difference* in the work.
 - E) Calculate the overall values of q, ΔU , and ΔH for the first process.

Р

F) Calculate the overall values of q, ΔU , and ΔH for the second process.

G) Compare the overall values of ΔU and ΔH for the two processes.

3(30). Consider the following reaction

$$O_3(g) \rightarrow O_2(g) + O(g)$$

- A) Given $\Delta_{\rm f} H^{\circ}_{298}/(\text{kJ mol}^{-1}) = 142.7$ for O₃ and 249.170 for O, calculate $\Delta_{\rm r} H^{\circ}_{298}$.
- B) Given $(H^{\circ}_{T}-H^{\circ}_{0})/(kJ \text{ mol}^{-1}) = 6.724$ for O, 8.680 for O₂, and 10.350 for O₃, calculate $\Delta_{r}H^{\circ}_{0}$.
- C) Given the bond enthalpy = 493.59 kJ mol⁻¹ for O_2 at 0 K, calculate the average bond enthalpy for the oxygen-oxygen bonding in O_3 .