CHEM441-001/002
College of Charleston
Fall 1999
Exam IV

1(25). The calorimeter constant for a solution calorimeter was determined by pouring 50.0 g of hot water at $97.3^{\circ} \mathrm{C}$ into 100.0 g of cool water in the calorimeter at $23.7^{\circ} \mathrm{C}$ resulting in a final temperature of $41.8{ }^{\circ} \mathrm{C}$. Calculate the calorimeter constant given $C_{\mathrm{p}}=4.184 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$ for water.

Exactly one mole of a hot metal at $86.2{ }^{\circ} \mathrm{C}$ was poured into 100.0 g of cool water in the calorimeter at $22.3^{\circ} \mathrm{C}$ resulting in a final temperature of $24.7^{\circ} \mathrm{C}$. Determine the molar heat capacity of the metal.

Compare this experimental molar heat capacity of the metal to that predicted by the Law of Dulong-Petit.

2(45). A student was interested in which of two processes involving one mole of an ideal monatomic gas would generate the greater amount of work:

1) reversible isothermal expansion from $P_{1}=100.00$ bar to $P_{2}=10.00$ bar at 298 K followed by a reversible adiabatic expansion to $P_{3}=1.00$ bar.
2) reversible adiabatic expansion from $P_{1}=100.00$ bar to $P_{2}=10.00$ bar followed by a reversible isothermal expansion to $P_{3}=1.00$ bar.
A) Calculate the total work for the first process.
B) Calculate the total work for the second process.
C) Which process yields the greater amount of work and by how much?
D) On the P - V axes given, indicate the two processes and show graphically the difference in the work.
E) Calculate the overall values of $q, \Delta U$, and ΔH for the first process.

F) Calculate the overall values of $q, \Delta U$, and ΔH for the second process.
G) Compare the overall values of ΔU and ΔH for the two processes.

3(30). Consider the following reaction

$$
\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g})
$$

A) Given $\Delta_{\mathrm{f}} H^{\mathrm{o}}{ }_{298} /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)=142.7$ for O_{3} and 249.170 for O , calculate $\Delta_{\mathrm{r}} H^{\mathrm{o}}{ }_{298}$.
B) Given $\left(H_{\mathrm{T}}{ }^{-} H^{\mathrm{o}}{ }_{0}\right) /\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)=6.724$ for $\mathrm{O}, 8.680$ for O_{2}, and 10.350 for O_{3}, calculate $\Delta_{\mathrm{r}} H_{0}^{\mathrm{o}}$.
C) Given the bond enthalpy $=493.59 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for O_{2} at 0 K , calculate the average bond enthalpy for the oxygen-oxygen bonding in O_{3}.

