CHEM441-001/002 College of Charleston Fall 1999 Exam III

1(25). The molar mass of gaseous IO is 142.9 g mol⁻¹; the vibrational frequency of the ground state is 681.6004 cm⁻¹; and the moment of inertia is 8.228×10^{-46} kg m². At 25 °C and 1.00 bar, calculate the molar

a) translational partition function

b) rotational partition function

c) vibrational partition function

- d) complete molecular partition function
- 2(15). The important energy levels of gaseous IO consist of a doubly degenerate ground level, a doubly degenerate first excited level at 25 014 J mol⁻¹, and a doubly degenerate second excited level at 257 889 J mol⁻¹. Calculate the partition function at
 - a) 25 °C
 - b) $T \rightarrow 0$
 - c) $T \rightarrow \infty$
- 3(10). Consider the reaction

$A + B-B \rightarrow A-B-B$

Excluding electronic and vibrational contributions, calculate ΔU assuming

a) A-B-B to be linear

b) A-B-B to be nonlinear

- 4(25). Calculate ΔH (thermal) at 1000 K for NH₃(g). The vibrational information is $\tilde{v}/(\text{cm}^{-1}) = 3506, 1022, 3577$ (doubly degenerate), and 1691 (doubly degenerate).
- 5(25). The heat capacity of $NH_3(g)$ at 1000 K is $C_p = 56.491$ J K⁻¹ mol⁻¹ and can be considered to be constant over small temperature changes. A molar sample of ammonia was subjected to a process in which the sample released 265 J of heat to the surroundings and delivered 112 J of work to the surroundings. What temperature change occurred in the system?