CHEM441-001/002
College of Charleston
Fall 1999
Exam II
Some general data for $\mathrm{O}_{2}(\mathrm{~g}): a=1.38 \mathrm{bar} \mathrm{L}^{2} \mathrm{~mol}^{-2}, b=0.0317 \mathrm{~L} \mathrm{~mol}^{-1} ; P_{\mathrm{c}}=50.8 \mathrm{bar}$, $T_{\mathrm{c}}=154.8 \mathrm{~K} ; \mathrm{O}=\mathrm{O}$ bond length $=121.1 \mathrm{pm} ; M=32.00 \mathrm{~g} \mathrm{~mol}^{-1}$

1(10). A student looked up the van der Waals constants for $\mathrm{HCl}(\mathrm{g})$ and compared them to the values given above for $\mathrm{O}_{2}(\mathrm{~g})$.
Is the value of $a$ for HCl greater or less than that for $\mathrm{O}_{2}$ ? Why?
Does the value of $b=0.0408 \mathrm{~L} \mathrm{~mol}^{-1}$ for HCl imply that HCl is a larger molecule than $\mathrm{O}_{2}$ ?
2(15). Using the value of $b$ given above, calculate the "collision radius" of $\mathrm{O}_{2}$. Show that this value is greater than the bond length by correctly indicating both distances on the sketch.


3(15). The $1.25-\mathrm{dm}^{3}$ "bomb" in a calorimeter was filled with 40.4 g of $\mathrm{O}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$. Calculate the pressure of the gas (expressed in bar) using the
A) ideal gas law
B) the law of corresponding states (Hougen-Watson-Ragatz plot attached)

4(15). Calculate the $v_{\mathrm{rms}}$ for a fog particle of mass $3 \times 10^{-20} \mathrm{~g}$ at $15^{\circ} \mathrm{C}$ and 1 bar. Compare the value to a typical molecular speed.

What would be the $v_{\mathrm{rms}}$ of the particle at 0.1 bar ?
$5(15)$. A wall of a container is struck by $1.0 \times 10^{23} \mathrm{O}_{2}$ molecules each second. What is the total force exerted on the wall if the speed of the molecules is $450 \mathrm{~m} \mathrm{~s}^{-1}$ ? Calculate the pressure (expressed in Pa ) if the area of the wall is $10.0 \mathrm{~cm}^{2}$. (Note that $1 \mathrm{~N}=1 \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$ )

6(10). The three curves shown in the diagram represent a gas at a very low temperature, the same gas at a moderate temperature, and a second, higher molar mass gas at the same moderate temperature. Match each curve to the appropriate gas/temperature information by drawing a line from each set of information to the respective curve.

Lower molar mass, very low temperature Lower molar mass, moderate temperature Higher molar mass, moderate temperature

$7(20)$. To prepare for this examination a student decided to derive the expression for $\overline{\left.v^{3}\right)^{1 / 3}}$ for an ideal gas by finding $\overline{v^{3}}$ first and then taking the cube root. Carry out this derivation.

