

3(15). Consider a 75.0-L tank containing 75.0 mol of nitrogen gas at 25 °C (a gas cylinder in the phy chem lab). Calculate the pressure of the gas using A. the ideal gas law

B. the van der Waals equation ($a = 1.3661 \text{ dm}^6 \text{ bar mol}^{-1}$, $b = 0.038577 \text{ dm}^3 \text{ mol}^{-1}$)

C. Describe the steps needed to use the compressibility factor Z if Z data are available on a plot like shown in question 1.

- 4(30). Calculate the ratio of the London dispersion forces to the total dipole forces in water at 25 °C. For water, $\mu = 6.14 \times 10^{-30}$ C m, $\alpha = 1.66 \times 10^{-40}$ C² J⁻¹ m², $I = 2.02 \times 10^{-18}$ J.
- 5(30). Considering rotational, vibration, and translation contributions as being important to the heat capacity of gaseous water at 155 °C, calculate $C_{v,m}$. For water, $\theta_{vib}/(K) = 2290$, 5160, 5360; $\theta_{rot}/(K) = 40.1$, 20.9, 13.4; $D_o = 917.6 \text{ kJ} \text{ mol}^{-1}$.
- 6(25). The translation partition function for a particle moving through a nanotube is

$$q(a,T) = \left(\frac{2\pi m k_B T}{h^2}\right)^{\frac{1}{2}} a$$

where *a* is the length of the tube and $Q(N,a,T) = q(a,T)^N/N!$. Derive an expression for $\langle E_m \rangle$.

Derive an expression for $C_{v,m}$.