Score _____/100

Name_____

CHEM442-001/002 College of Charleston Fall 2000 Exam V

For the reaction

 $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$

the following data taken from Schaum's, NBS Tables, JANAF Tables, and NIST will be of value for Questions 1-4.

$\overline{\mathbf{BE}}/(kJ \text{ mol}^{-1})$	С	0	
0 -	326	142	
O =	803ª	498	^a 728 if $R_1 R_2 C = O$
O =	1075		
C -	331		
C =	590°		° 506 if alternating - and =
C ≡	812		

	$O_2(g)$	CO(g)	$CO_2(g)$
$\Delta_{\rm f} H^{\rm o}_{298}/(\rm kJ\ mol^{-1})$		-110.525	-393.509
$\Delta_{\rm f}G^{\rm o}_{298}/(\rm kJ\ mol^{-1})$		-137.168	-394.359
$(H^{\circ}_{298} - H^{\circ}_{0})/(\text{kJ mol}^{-1})$	8.680	8.665	9.360
$(H^{\circ}_{1000} - H^{\circ}_{0})/(\text{kJ mol}^{-1})$	31.386	30.361	42.761
$S^{\circ}_{298}/(J \text{ K}^{-1} \text{ mol}^{-1})$	205.138	197.674	213.74
$A/(J \text{ K}^{-1} \text{ mol}^{-1})$	29.65900	25.56759	24.99735
$B/(10^{-3} \text{ J K}^{-2} \text{ mol}^{-1})$	6.137261	6.096130	55.18696
<i>C</i> /(10 ⁻⁶ J K ⁻³ mol ⁻¹)	-1.186521	4.054656	-33.69137
D/(10 ⁻⁹ J K ⁻⁴ mol ⁻¹)	0.095780	-2.671301	7.948387
$E/(10^6 \text{ J K mol}^{-1})$	-0.219663	0.131021	-0.136638

For O₂(g): g(elec) = 3, $\tilde{\mathbf{v}} = 1580.1932 \text{ cm}^{-1}$; $I = 1.936398 \times 10^{-46} \text{ kg m}^2$

1(15). Using the average bond enthalpy data, estimate $\Delta_r H^{\circ}_{298}$.

Why is this value only an estimate?

Using $\Delta_{\rm f} H^{\rm o}_{298}$ data, calculate $\Delta_{\rm r} H^{\rm o}_{298}$.

2(15). Using the value of $\Delta_r H^{\circ}_{298}$ from Question 1 and the thermal enthalpy data given at 298 K, calculate $\Delta_r H^{\circ}_{0}$.

Using $\Delta_r H^{\circ}_0$ and the thermal enthalpy data given at 1000 K, calculate $\Delta_r H^{\circ}_{1000}$.

The release/gain of energy is one of the driving forces for the spontaneity of a reaction. Is the energy change for this reaction more or is it less favorable at 1000 K than at 298 K? _____

3(20). Using the third law entropy data at 298 K, calculate $\Delta_{r}S^{\circ}_{298}$.

Using $\Delta_r C_P^{\circ}$ expressed in terms of the Shomate equation $C_P^{\circ} = A + BT + CT^2 + DT^3 + ET^{-2}$, derive the equation for $\Delta_r S_T^{\circ}$ expressed in terms of $\Delta_r S_{298}^{\circ}$, *T*, and the Shomate constants.

Using the Shomate constants, calculate $\Delta_r S^{\circ}_{1000}$.

Increase or decrease of entropy is one of the driving forces for the spontaneity of a reaction. Is this entropy change for the reaction more or is it less favorable at 1000 K than at 298 K? _____

4(10). Using $\Delta_{\rm f} G^{\rm o}_{298}$ data, calculate $\Delta_{\rm r} G^{\rm o}_{298}$.

Using the value of $\Delta_r H^{\circ}_{1000}$ from Question 2 and $\Delta_r S^{\circ}_{1000}$ from Question 3, calculate $\Delta_r G^{\circ}_{1000}$.

Is the reaction more or is it less spontaneous at 1000 K than at 298 K?

5(15). A molar sample of Ne acting as an ideal gas is compressed isothermally and isobarically from 1.00 bar to 10.00 bar at 25 °C using an external pressure of 500.0 bar. Calculate ΔS (system).

Calculate ΔS (surroundings).

Calculate ΔS (universe).

6(25). Heat capacity data are known for the three solid forms, the liquid phase, and the gaseous phase of molecular oxygen from 11.75 K to 298 K. The values of ΔH for the various phase transformations are also known. Explain fully how S_{298}° can be determined from these data.

Using the electronic, vibrational, and rotational spectroscopic data, calculate S_{298}° for $O_2(g)$.

Does the statistical mechanical value of S_{298}° differ from the thermodynamic value by the factor of *R* ln 2?