CHEM442-001/002	Name
College of Charleston	
Fall 2000	
Exam IV	

Score _____/100

1(20). Calculate $C_{P,m}^{o}$ for gaseous CO₂ at 298 K. The vibrational frequencies are $\tilde{\mathbf{v}}/(\text{cm}^{-1}) = 1384.86, 667.30$ (double degenerate), and 2349.30.

For the Shomate equation $C_{P,m}^{o}/(J \text{ K}^{-1} \text{ mol}^{-1}) = A + BT + CT^2 + DT^3 + ET^2$, the NIST data base gives A = 24.99735, $B = 55.18696 \times 10^{-3}$, $C = -33.69137 \times 10^{-6}$, $D = 7.948387 \times 10^{-9}$, and $E = -0.136638 \times 10^6$ for CO₂. Calculate $C_{P,m}^{o}$ from these data.

Compare the results.

2(30). The electronic thermal energy of a metal is given by

$$E(\text{thermal,electronic}) = \frac{3}{5}NE_{\text{F}}\left[1 + \left(\frac{5\pi^2}{12}\right)\left(\frac{k_{\text{B}}T}{E_{\text{F}}}\right)^2 + \dots\right]$$

Derive the equation for C_{ν} (electronic).

The value of the Fermi energy can be calculated using

$$E_{\rm F} = \left(\frac{h^2}{8m_{\rm e}}\right) \left(\frac{3N}{\pi V_{\rm m}}\right)^{2/3}$$

where $m_e = 9.11 \times 10^{-31}$ kg. Given the density of Mg at 25 °C is 1.74 g cm⁻³, calculate E_F .

Determine the value of the electronic heat capacity at 25 °C for Mg.

What fraction of the classical limit given by the Law of Dulong-Petit is the electronic heat capacity at 25 °C?

- 3(10). Starting with $d(\Delta H) = \Delta C_P dT$, derive the equation expressing $\Delta_r H_{T_2} \Delta_r H_{T_1}$ for a chemical reaction assuming the heat capacity data are given by the Shomate equation (see Question 1).
- 4(10). Calculate the difference between $\Delta_r H$ and $\Delta_r U$ for the chemical reaction between glycine and nitrous acid at 25 °C.

$$NH_2CH_2COOH(aq) + HONO(aq) \rightarrow HOCH_2COOH(aq) + N_2(g) + H_2O(l)$$

5(30). Consider the reversible, isothermal expansion of one mole of Ne acting ideally from a pressure of 10.00 bar to 1.00 bar at 25 °C. Calculate q, w, ΔU , and ΔH for this process.

Assuming the arm of the piston from the above expansion is connected to a second piston containing one mole of He initially at 25 °C and that all of the work is used to compress the He reversibly and adiabatically, calculate q, w, ΔU , and ΔH for this process and calculate the final temperature.

Calculate the ratio of the final pressure to the initial pressure for the He after the compression process is completed.