Name \qquad
College of Charleston
Fall 2000
Exam IV
Score \qquad /100

1(20). Calculate $C_{P, \mathrm{~m}}^{0}$ for gaseous CO_{2} at 298 K . The vibrational frequencies are $\tilde{\mathrm{v}} /\left(\mathrm{cm}^{-1}\right)=$ 1384.86, 667.30 (double degenerate), and 2349.30.

For the Shomate equation $C_{P, \mathrm{~m}}^{0} /\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)=A+B T+C T^{2}+D T^{3}+E T^{-2}$, the NIST data base gives $A=24.99735, B=55.18696 \times 10^{-3}, C=-33.69137 \times 10^{-6}, D=7.948387 \times$ 10^{-9}, and $E=-0.136638 \times 10^{6}$ for CO_{2}. Calculate $C_{P, \mathrm{~m}}^{\mathrm{o}}$ from these data.

Compare the results.
2(30). The electronic thermal energy of a metal is given by

$$
E(\text { thermal,electronic })=\frac{3}{5} N E_{\mathrm{F}}\left[1+\left(\frac{5 \pi^{2}}{12}\right)\left(\frac{k_{\mathrm{B}} T}{E_{\mathrm{F}}}\right)^{2}+\ldots\right]
$$

Derive the equation for C_{V} (electronic).
The value of the Fermi energy can be calculated using

$$
E_{\mathrm{F}}=\left(\frac{h^{2}}{8 m_{\mathrm{e}}}\right)\left(\frac{3 N}{\pi V_{\mathrm{m}}}\right)^{2 / 3}
$$

where $m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$. Given the density of Mg at $25^{\circ} \mathrm{C}$ is $1.74 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate E_{F}.
Determine the value of the electronic heat capacity at $25^{\circ} \mathrm{C}$ for Mg .
What fraction of the classical limit given by the Law of Dulong-Petit is the electronic heat capacity at $25^{\circ} \mathrm{C}$?

3(10). Starting with $\mathrm{d}(\Delta H)=\Delta C_{P} \mathrm{~d} T$, derive the equation expressing $\Delta_{\mathrm{r}} H_{T_{2}}-\Delta_{\mathrm{r}} H_{T_{1}}$ for a chemical reaction assuming the heat capacity data are given by the Shomate equation (see Question 1).

4(10). Calculate the difference between $\Delta_{\mathrm{r}} H$ and $\Delta_{\mathrm{r}} U$ for the chemical reaction between glycine and nitrous acid at $25^{\circ} \mathrm{C}$.

$$
\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{HONO}(\mathrm{aq}) \rightarrow \mathrm{HOCH}_{2} \mathrm{COOH}(\mathrm{aq})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

5(30). Consider the reversible, isothermal expansion of one mole of Ne acting ideally from a pressure of 10.00 bar to 1.00 bar at $25^{\circ} \mathrm{C}$. Calculate $q, w, \Delta U$, and ΔH for this process.

Assuming the arm of the piston from the above expansion is connected to a second piston containing one mole of He initially at $25^{\circ} \mathrm{C}$ and that all of the work is used to compress the He reversibly and adiabatically, calculate $q, w, \Delta U$, and ΔH for this process and calculate the final temperature.

Calculate the ratio of the final pressure to the initial pressure for the He after the compression process is completed.

