CHEM111 College of Charleston	Name
Spring 2002 Exam III	Score/100
1(21). Circle the letter that represents the best response to each item.	

An atom of Mn (Z = 25) has two 4s and five 3d electrons. How many unpaired electrons would there be in the Mn²⁺ ion?

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

Which is an acceptable set of quantum numbers for a 3d electron?

- (A) n = 3, l = 2, $m_l = 1$, $m_s = +1/2$
- (B) n = 3, l = 3, $m_l = 1$, $m_s = +1/2$
- (C) n = 2, l = 2, $m_l = -1$, $m_s = -1/2$
- (D) n = 2, l = 3, $m_l = 2$, $m_s = -1/2$

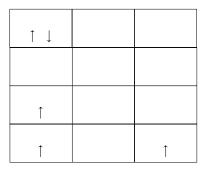
Which isoelectronic ion is the smallest in size?

- (A) Al^{3+}
- (B) Na⁺
- (C) F
- (D) O^{2-}

Which particle has the highest first ionization energy?

- $(A) K^+$
- (B) K
- (C) Cl⁻
- (D) Cl

Which has the least tendency to gain electrons?


- (A) N
- (B) P
- (C) As
- (D) Sb
- (E) Bi

Which set of mass-velocity values would generate the longest deBroglie wavelength?

- (A) high v, high m
- (B) high v, low m
- (C) low v, high m
- (D) low v, low m

Which electron configuration is an exception to the Pauli exclusion principle?

- (A)
- (B)
- (C)
- (D)
- ↑ ↓ ↑ ↓ ↑ ↓
- † \(\)

2(10). You are given the task of preparing 250.00 mL of 0.265 M NaCl solution. What mass of solid NaCl is required? (Watch sig figs.) What is the name of the type of flask that should be used?_____

3(15). A 10.00 mL sample of phosphoric acid was titrated with 0.101 M NaOH

$$H_3PO_4(aq) + NaOH(aq) \rightarrow Na_2HPO_4(aq) + H_2O(l)$$

If 13.26 mL of NaOH were required, what is the concentration of the acid?

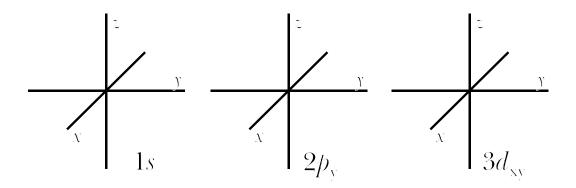
4(10). Use the following thermochemical equations

$$H_2(g) \rightarrow 2 H(g)$$
 $\Delta H = 436 \text{ kJ}$
 $D_2(g) \rightarrow 2 D(g)$ $\Delta H = 444 \text{ kJ}$
 $H_2(g) + D_2(g) \rightarrow 2 HD(g)$ $\Delta H = 0.6 \text{ kJ}$
 $O_2(g) + D_2(g) \rightarrow 2 OD(g)$ $\Delta H = 74 \text{ kJ}$

to determine the heat of reaction for

$$HD(g) \rightarrow H(g) + D(g)$$

5(10). The enthalpy of formation of FO(g) is 109 kJ mol⁻¹, of $F_2O(g)$ is 24.7 kJ mol⁻¹, of $F_2O_2(g)$ is 18.0 kJ mol⁻¹, and of $F_2O_3(g)$ is 15.9 kJ mol⁻¹. Determine the heat of reaction for


$$2 F_2O_2(g) \rightarrow F_2O_3(g) + F_2O(g)$$

6(10). The heat capacity of water is 34 J K⁻¹ mol⁻¹ for steam, 75 J K⁻¹ mol⁻¹ for liquid, and 38 J K⁻¹ mol⁻¹ for ice and the enthalpy of fusion is 6.009 kJ mol⁻¹ and the enthalpy of vaporization is 40.656 kJ mol⁻¹. Calculate q for heating 10.0 g of water from 25 °C to 115 °C at one atmosphere pressure.

7(9). Complete the table describing the atomic quantum numbers.

Symbol	Name	Permitted Values	Interpretation
			spin angular momentum
		1,2,3,	
	Magnetic		
l			

8(5). Sketch the orbitals.

9(10). Write the electron configuration for P

What ion(s) will P form?_____ Is P paramagnetic?_____

Write the electron configuration for In

What ion(s) will In form?_____ Is In paramagnetic?_____