CHEM111 College of Ch Spring 2002	arleston		Name	2			
Exam II					Score	/1	00
1(24). Circle t	the letter that re	presents the be	est response to	each iten	1.		
_	n acidic solution (B) CH ₄		(D) CaO	(E) SO	2		
Once the follo	owing equation	is balanced usi C + HNO ₃ →	-				
what is the sur	m of the coeffic				1120		
(A) 5	(B) 7	(C) 9	(D) 12	(E) 16			
how many mo	owing equation bles of N_2 will by (B) two	$N_2H_4 + \underline{}$ be produced for	every mole of				
	as the oxidation (B) Mn ₂ O ₇) ₆] ⁻			
	ts highest oxid (B) HClO			(E) HC	$1O_4$		
Which stateme	ent is true for the						
(A) Cu ²⁺ is oxidized (C) Cu ²⁺ is reduced		Fe(s) + Cu ²⁺ (aq) \rightarrow Cu(s) + Fe ²⁺ (aq) (B) Cu ²⁺ gains in oxidation state (D) Fe(s) is reduced					
solutions will	each of the fol exhibit the hig H (B) KO	hest conductivi	ty?		added. Whic	h of the re	sulting
volumes of the (A) NaNO ₃ an	mpounds woul eir dilute soluti d CuSO ₄ . CuSO ₄	ons? (B) CuCl ₂ and	l CuBr ₂	displace	ment") upon	mixing eq	ual
2(20) What m	ass of aluminu	m oxide is forr	ned by the rea	ction of 6	53 g of alum	ninum and	30.2 g

2(20). What mass of aluminum oxide is formed by the reaction of 65.3 g of aluminum and 30.2 g of oxygen and what mass of which reactant, if any, will be in excess?

$$4 \text{ Al(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Al}_2\text{O}_3(s)$$

- 3(10). In the "electric pickle" Thinkwell demo, why did the current pass and what caused the color?
- 4(10). Disulfur dichloride can be prepared by

$$3 SCl_2 + 4 NaF \rightarrow SF_4 + S_2Cl_2 + 4 NaCl$$

Determine the percent yield if 5.234 g SCl₂ in excess NaF yields 1.191 g S₂Cl₂.

5(36). Balance these reactions and then classify each one as either redox or as precipitation, acid-base, or gas-forming exchange (circle the response). Under each, write the net ionic equation.