\qquad
College of Charleston
Spring 2002
Exam II
Score \qquad /100

1(24). Circle the letter that represents the best response to each item.
Which gives an acidic solution in water?
(A) H_{2}
(B) CH_{4}
(C) NH_{3}
(D) CaO
(E) SO_{2}

Once the following equation is balanced using no fractional coefficients $\ldots-\mathrm{C}+\ldots \mathrm{HNO}_{3} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{NO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$ what is the sum of the coefficients?
(A) 5
(B) 7
(C) 9
(D) 12
(E) 16

Once the following equation is balanced

$$
\ldots \mathrm{N}_{2} \mathrm{H}_{4}+\ldots \mathrm{N}_{2} \mathrm{O}_{4} \rightarrow _\mathrm{N}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

how many moles of N_{2} will be produced for every mole of $\mathrm{N}_{2} \mathrm{O}_{4}$ that reacts?
(A) one
(B) two
(C) three
(D) four

Manganese has the oxidation number of +5 in
(A) $\left[\mathrm{MnF}_{6}\right]^{3-}$
(B) $\mathrm{Mn}_{2} \mathrm{O}_{7}$
(C) $\left[\mathrm{MnO}_{4}\right]^{2-}$
(D) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{-}$

Chlorine has its highest oxidation number in
(A) HCl
(B) HClO
(C) HClO_{2}
(D) HClO_{3}
(E) HClO_{4}

Which statement is true for the reaction

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{~s})+\mathrm{Fe}^{2+}(\mathrm{aq})
$$

(A) Cu^{2+} is oxidized
(B) Cu^{2+} gains in oxidation state
(C) Cu^{2+} is reduced
(D) $\mathrm{Fe}(\mathrm{s})$ is reduced

To 1.0 mol of each of the following compounds, 1.00 L of water is added. Which of the resulting solutions will exhibit the highest conductivity?
(A) $\mathrm{CH}_{3} \mathrm{COOH}$
(B) KCl
(C) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(D) CuS

Which two compounds would react by exchange ("double displacement") upon mixing equal volumes of their dilute solutions?
(A) NaNO_{3} and CuSO_{4}
(B) CuCl_{2} and CuBr_{2}
(C) BaCl_{2} and CuSO_{4}
(D) $\mathrm{NH}_{4} \mathrm{Cl}$ and CuSO_{4}

2(20). What mass of aluminum oxide is formed by the reaction of 65.3 g of aluminum and 30.2 g of oxygen and what mass of which reactant, if any, will be in excess?

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

3(10). In the "electric pickle" Thinkwell demo, why did the current pass and what caused the color?

4(10). Disulfur dichloride can be prepared by

$$
3 \mathrm{SCl}_{2}+4 \mathrm{NaF} \rightarrow \mathrm{SF}_{4}+\mathrm{S}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaCl}
$$

Determine the percent yield if $5.234 \mathrm{~g} \mathrm{SCl}_{2}$ in excess NaF yields $1.191 \mathrm{~g} \mathrm{~S}_{2} \mathrm{Cl}_{2}$.
5(36). Balance these reactions and then classify each one as either redox or as precipitation, acidbase, or gas-forming exchange (circle the response). Under each, write the net ionic equation.

Redox

$$
\ldots \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots \mathrm{BaCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Precip acidbase gas
Redox $\quad \ldots \mathrm{HNO}_{3}(\mathrm{aq})+\ldots \mathrm{CoCO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\ldots \mathrm{CO}_{2}(\mathrm{~g})$
Precip acidbase gas
Redox $\quad \ldots \mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})+\ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \ldots \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})+\ldots \mathrm{NaNO}_{3}(\mathrm{aq})$ Precip acidbase gas

Redox $\quad \ldots \mathrm{CdCl}_{2}(\mathrm{aq})+\ldots \mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \ldots \mathrm{CdS}(\mathrm{s})+\ldots \mathrm{NaCl}(\mathrm{aq})$
Precip acidbase gas
Redox

$$
\ldots \mathrm{Ca}(\mathrm{~s})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CaO}(\mathrm{~s})
$$

Precip acidbase gas
Redox

$$
\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow _\mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

